Lecture 1(a) Chromosomal Aberrations Numerical changes in chromosomes

Prof. (Dr.) Maneesha Singh School of Agricultural Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand

Basic definitions

- Chromosomes, DNA and genes
- Karyotype
- Definition of Chromosomal aberrations
 - Structural and numerical changes
 - Numerical changes
 - Euploidy
 - Aneuploidy

Chromosomes

- The **chromosome** carries the genetic information.
- composed of deoxyribonucleic acid
 (DNA) on framework of protein.
- Segments of DNA molecules comprise the genes; the units of heredity.

Chromosomes

 During cell division, the chromosome can be seen to consist of 2 parallel strands; the chromatids, held together at one point, the centromere.

Karyotype

- It is the set of chromosomes of an individual.
- It is the systematized arrangement of the chromosomes of a single cell.
- In the human cell, there are 46 chromosomes or 23 pairs (diploid number); of these 23 pairs, 22 are similar in both sexes and are called the *autosomes*. The remaining pair is called *sex chromosomes* : XX in the female cells and XY in the male cells .
- Chromosomes are arranged in groups A to G according to their shape & size.

Karyotype of a normal female in human

Karyotype of a normal male in human

CHROMOSOMAL ABERRATIONS

- A chromosome aberration, disorder, anomaly, abnormality, or mutation is a missing, extra, or irregular portion of chromosomal DNA. OR
- Mutations that cause change in the structure or number of chromosomes are called chromosomal aberrations. Generally, the incidence of chromosomal abnormalities is 5-6 persons/1000.
- Many children with a chromosomal abnormality have mental or physical birth defects.

HISTORY OF CHROMOSOMAL ABERRATIONS

- In 1959 two discoveries opened a new era of genetics.
- Jerome Lejeune, Marthe Gautier, and M. Raymond Turpin discovered the presence of an extra chromosome in Down syndrome patients.
- C. E. Ford and his colleagues, P. A. Jacobs and J. A. Strong first observed sex chromosome anomalies in patients with sexual development disorders.

Types of Chromosomal aberrations

- Chromosomal aberrations are either numerical or structural.
- They are a very common cause of early spontaneous miscarriage.
- Usually, but not always, cause multiple congenital anomalies and learning difficulties.

Chromosomal Aberrations (abnormalities)

Structural Aberrations

- o **Deletion**
- o **Duplication**
- o Inversion
- Translocation

Numerical Aberrations

- Euploidy: the usual number and sets of chromosomes
- Polyploidy: the presence of three or more complete sets of chromosomes
- Aneuploidy: the presence of additional chromosomes or missing individual chromosomes

Numerical aberrations in Chromosomes

Euploidy

- Presence of extra chromosome is exact multiple of basic chromosome number or,
- Organism should posses one or, more full sets of chromosomes.
- Euploids can be monoploids, diploids or polyploids

Monoploidy

- An individual that contains one half the normal number of chromosomes is a **monoploid** and exhibits **monoploidy**.
- Some species such as bees, ants and male bees are normally monoploid

Common Wheat posses monoploidy

 The chromosomes of common wheat are believed to be derived from three different ancestral species, each of which had 7 chromosomes in its haploid gametes. The monoploid number is thus 7 and the haploid number is $3 \times 7 = 21$. In general *n* is a multiple of *x*. The somatic cells in a wheat plant have six sets of 7 chromosomes: three sets from the egg and three sets from the sperm which fused to form the plant, giving a total of 42 chromosomes. As a formula, for wheat 2n = 6x = 42, so that the haploid number *n* is 21 and the monoploid number *x* is 7.

Polyploidy

- Autopolyploids: polyploids created by chromosome duplication within a species
- Allopolyploids: polyploids created by hybridization between different species (homeologous chromosomes)

1. Autopolyploidy

Even-numbered multiples of haploid number of chromosomes. e.g.(a) Triploidy (23x3 or 63 chromosomes)
(b) Tetraploidy (23x4 or 92 chromosomes)
(c)Hexaploidy (23x6 or 138 chromosomes)
(d)Octaploidy (23x8 or 184 chromosomes)

Polyploidy

conti...

- Triploidy is almost always sterile (bananas are propagated by cuttings, some apple species by grafts,
- Triploids are often formed by fusion of a diploid (2x) gamete from a tetraploid (4x) parent with a normal gamete from a diploid parent.
- Autopolyploidy can also be induced artificially with colchicine.

- Autotriploids are known in watermelons, sugarbeet, tomato, grapes and banana, although in several of these cases the polyploids have been artificially produced.
- Autotetraploids are known in rye (*Secale cereale*), corn (*Zea mays*), red clover (*Trifolium pratense*), berseem (*Trifolium alexandrium*), marigolds *Tagetes*), snapdragons (*Antirrhinum*), *Phlox*, grapes, apples, etc.

2. Allopolyploidy

- Polyploidy may result from doubling of chromosome number in a F₁ hybrid which is derived from two distinctly different species.
- Let A represent a set of chromosomes (genome) in species X, and let B represent another genome in a species Y. The F₁ will then have one A genome and another B genome. The doubling of chromosomes in this F₁ hybrid (AB) will give rise to a tetraploid with two A and two B genomes . Such a polyploid is called an allopolyploid or **amphidiploid**.

Allopolypoidy

conti.....

Raphanobrassica is a example of allopolyploidy

- In 1927, G.D. Karpechenko, a Russian geneticist, reported a cross between *Raphanus sativus* (2n = 18) and *Brassica oleracea* (2n = 8) to produce F₁hybrid which was completely sterile.
- On cytological examination these fertile plants were found to have 2n = 36 chromosomes, which showed normal pairing into 18 bivalents

Raphanobrassica conti... 18R 18BRaphanus sativum Brassica oleracea (radish) (cabbage) 9R+9B diploid hybrid 18R+18B Raphanobrassica

Common cultivated wheat is an example of allopolyploidy

- There are three different chromosome numbers in the genus *Triticum*, namely 2n = 14, 2n = 28 and 2n 42.
- The common wheat is hexaploid with 2n = 42, and is derived from three diploid species :
- (i) AA = Triticum aegilopoides (2n = 14),
- (ii) BB = Aegilops speltoides (2n = 14)
- (iii) $DD = Aegilops \ squarrosa \ (2n = 14).$
- The hexaploid wheat is designated as AABBDD,

Allopolyploidy in wheat

Allopolyploidy examples

(i) **Cotton:** The new world cotton (*Gossypium hirsutum*) J.O. Beasley crossed old world cotton (*Gossypium herbaceum*) with American cotton (*Gossypium raimondii*) and doubled the chromosome number in F1 hybrids. The allopolyploid thus produced resembled the cultivated new world cotton (*Gossypium hirsutum*) and when crossed, with it gave fertile F1 hybrids.

(ii)Tobacco: There are two cultivated species of tobacco. i. e. *Nicotiana tabacum* and *Nicotiana rustica*. *Nicotiana tabacum* is an allotetraploid and available evidence suggests that it is derived from a cross between *Nicotiana sylvestris* x *Nicotiana tomentosa*

Aneuploidy

- 1. Aneuploidy: Individuals have a numerical change in part of the genome. The chromosome number of aneuploids is not an exact multiple of the haploid number, n.
- 2. Hypoploidy: an organism in which a chromosome (or part thereof) is under represented.
- **3. Hyperploidy:** an organism in which a chromosome (or part thereof) is overrepresented.

Types of Hypoploidy Monosomy (2n-1):

- The diploid organism which lacks one chromosome of a single homologous pair is called monosomic with genomic formula 2n-1.
- **Turner Syndrome:** (XO) female with retarded sexual development who is usually sterile.

Nullisomy (2n-2):

- Diploid organisms which have lost a pair of homologous chromosomes are called nullisomics with genomic formula 2n-2.
- Humans with this condition will not survive.

Types of Hyperploidy

Trisomy(2n+1): A particular chromosome represented three times

• Trisomics were obtained for the first time in *Datura stramonium* (jimson weed) by **A.F. Blakeslee** and his co-workers.

Tetrasomy (2n+2): A particular chromosome represented four times.

 The four homologues tend to form a quadrivalent at meiosis and disjunction often proceeds fairly regularly, two by two. I All the 21 possible tetrasomics in wheat are viable.

Trisomy of Autosomes in Human beings

- Trisomy 13 or D-trisomy (Patau syndrome)
- Trisomy 18 or E-trisomy (Edward syndrome)
- Trisomy 21 or G-trisomy (Down syndrome)

Trisomy 13 (Patau Syndrome)

- 1st described by Bartholin (1657) & redefined by Patau (1960).
- Chromosomal complement: 47,XX,+13 (female) or 47,XY,+13 (male)
- Phenotype: Male or female
- Incidence: 1:12,000 (increases with the age of mother)

Patau syndrome

Karyotype From a Female With Patau syndrome (47,XX,+13)

Trisomy 18 (Edward Syndrome)

• Chromosomal complement: 47,XX,+18 (female) or 47,XY,+18 (male)

Phenotype: Male or female

Incidence: 1:8000

Overlapping of the fingers in Edwards' syndrome

Short broad hand

Down Syndrome (Mongolism) Trisomy 21 Incidence :

- The most common chromosomal aberration
- Incidence 1/700 live birth & 10 % of M.R.

Definition : It is trisomy 21 i.e. the cell contain an extra chromosome, number 21 i.e. the cell contains three 21 chromosomes instead of two .

Down Syndrome

Cardiofaciocutaneous Syndrome Antimongoloid slant

Trisomy of Allosome in Human beings

- Klinefelter Syndrome
- Trisomy of sex chromosome - XXY (An additional X chromosome in males)
- Occurrence 1 in 500-1000 males

References:

• Strickberger, M.W. 2001. Genetics. Prentice Hall of India. Pvt. Ltd.,

New Delhi.

• Shekhawat, A.S. and Tripathi, B.K., 2009. A practical manual on

Element of Genetics. Publish by College of Agriculture, Bikaner.

- David Freidfelder, 2004. Essential of Molecular Biology
- Singh, B.D. 2020. Genetics

Thank you....